
League of 
Legends Match 

Outcome 
Prediction

Ethan Shapiro



Overview of Slides
1. Summary of Findings (1 slide)

2. Introduction to League of Legends (1 slide)

3. Problem Formulation (2 slides)

4. Dataset Overview & Processing (5 slides)

5. Preliminary Research (3 slides)

6. Basic Models (2 slides)

7. Learnings from Basic models (4 slides)

8. Neural Network Models (4 slides)

9. Model Performance & Key Findings (11 slides)

10. Challenges & Lessons Learned (4 slides)

11. Final Thoughts & Future Work (1 slide)



Summary of Findings
This project explores predicting match outcomes before a game 

starts using player statistics and champion selection data.

The best baseline model was Logistic Regression (56.04% 
accuracy), outperforming XGBoost and other non-linear models. 

This is likely because player performance follows a normal 
distribution, aligning well with the assumptions of normality in 

linear models.

The best overall model was a hybrid of deep learning and linear 
components (57.34% accuracy), combining role-based player 
strengths with raw performance differences for improved 

predictions.

Key Takeaways:

✅ Linear models are strong baselines – Logistic Regression 

outperformed other non-linear models.

✅ Player performance differences matter – Role-based stats 

differences were more informative than team-level metrics.

✅ Hybrid models improve accuracy – Combining linear and deep 

learning yielded the best results.

✅ More complexity isn’t always better – Advanced transformer 

models (despite being the best performing in other scenarios) 

underperformed due to not being suited for my task and data. 

Future work includes improving champion matchup modeling and 

refining predictions for matches where probability to win is lower.



0. What is League of Legends?



League of Legends: 
A Team-Based 
Strategy Game
Similar to basketball or soccer, teams of 

5 players compete with defined roles 

(e.g., defender, midfielder, striker).

Each player picks a unique "champion" 

(like choosing a specialized player) from 

over 160 options, each with unique 

skills and abilities.

Success relies on team coordination, 

individual performance, and strategic 

matchups—akin to setting up plays and 

countering opponents in traditional 

sports.
Champion Selection: What happens before the game



1. Problem Formulation



We are trying to predict who will win the game before it starts. 

In achieving our above goal, we also want to understand the factors for a team winning a league 
of legends game as well as beat other model’s performance.

What is the goal?



Fair and balanced matches enhance player enjoyment and engagement.

If we can predict a match outcome before it begins, we are one step closer to building a more 

balanced matchmaking system.

Why should we care?



2. The data



Raw Datasets
Match History

- Contains the information regarding all 10 player picks, bans, and roles for a 
match. It also contains when the match was played and who won.

- Over 400,000 totals matches

Player Performance History

- Contains the in-game match stats including kills, deaths, gold earned, etc.
- Over 12 million total matches
- The goal with this dataset is to provide some context to each player within the 

match



Match History Data
- Each row is one team in a specific match, so 

an entire match is two rows

- Over 400,000 totals matches

- Only 150,000 usable matches

match_id game_creation game_duration … team pick1 lane1 won

NA1_5111521472 1726271773151 926 … 100 92 TOP True

NA1_5111521472 1726271773151 926 … 200 122 TOP False



Player History Data
- Contains the in-game performance 

statistics including kills, deaths, gold 
earned, etc.

- Over 12 million totals matches

match_id game_creation game_duration … user_id assistMePings goldPerMinute win

NA1_5111521472 1707312577103 1422 … lT7_x…0Vi 3 372.805906 True

NA1_4914990546 1726271773151 926 … RT1zx…1uI 5 351.7041237 False



Data Prep General Process
1. Raw Data Cleaning

a. Removed invalid matches or participants.
b. Checked for missing or null values.

2. Merging Datasets
a. Removed invalid matches or participants. Checked for missing or null values.

3. Feature Engineering
a. Calculated aggregated stats (e.g., team total kills, gold difference).
b. Created new features (details in next slide).

4. Normalization
a. Normalized by game length except for binary statistics
b. Applied z-score normalization for specific datasets. 

5. Encode Features
a. Encoded user ids, match ids, champion picks, etc. Only necessary for the transformer model

6. Data Splitting
a. Divided data into train, validation, and test sets.



Final Datasets
Individual Z-Scored Difference Dataset (IZ Diff)

1. Normalize player statistics based on their 

match history

2. Average performance over the last 50 

games (max) for each player

3. Apply Z-scoring using the distribution of 

performance for their chosen champion

4. Subtract role-based performance 

differences to account for positional 

variations

Other Datasets Tested

Individual Z-Scored Dataset (IZ)

- Player-level stats normalized for comparisons across 
players

Team Z-Scored Dataset (TZ)

- Aggregated and normalized stats for each team in a match

Team Z-Scored Difference Dataset (TZ Diff)

- Same as above but we take the difference between teams

Transformer Dataset

- Stats and matches are separated
- When training on matches, the player’s history before that match 

is grabbed from the history dataset



3. Preliminary research



The most current model: DraftRec
DraftRec

- Draft Recommendation: Suggests champions 

based on role strengths, player stats, and 

champion matchups.

- Two Objectives: Predict champion picks for 

better team synergy and game outcomes to 

evaluate draft strength.

- Balanced Approach: Combines complex 

matchup modeling with simple player stat 

analysis for accurate recommendations.



Previous Model Performances
1. The best previous model is DraftRec with 

55.35% accuracy

2. We are essentially “fighting” the 
matchmaking algorithm by trying to 

extract who will win before the game is 

played, so ~55% accuracy is quite good. 
3. My goal is just to see if I can achieve any 

better than Draft Rec’s 55.35%.



My First Challenge: Recreating DraftRec
Challenges…

Data Preparation Issues: DraftRec’s dataset 

preparation was complex and since the documentation 

(already very minimal) is in Korean and didn’t directly 

translate well, it was hard to debug.

Resource Constraints: Model training consumed over 

70GB of memory, making it impractical to run efficiently.

Over-Complexity: The transformer-based model was 

too complex for the amount of data I had, so it wasn’t able 

to learn well.

What I learned…

Start Simple: It’s always important to get a baseline. 
This way, I know what the minimum performance is so I 
know what is an improvement.

Fit Model to Data: Even state-of-the-art models won’t 
work if they’re not suited to the dataset or the problem. 
DraftRec had a different overall objective and much more 
data, making it not as well suited for my objective.

Iterative Approach Matters: Slowly building up a 
model based on insights is more effective for 
understanding than starting out big. Not only that, the 
resources needed can stay within the bounds of my 
machine.



4. Basic Models



Basic Model Performance

Model and 
(% accuracy)

Individual Z-Score 
Dataset

Individual Z-Score 
Difference Dataset 
(Final Dataset)

Team Z-Score 
Dataset

Team Z-Score 
Difference Dataset

Logistic 
Regression

55.73 56.04 (Best) 55.77 55.77

Random Forest 52.66 52.75 53.60 54.27

XGBoost 53.72 53.49 54.62 54.62

K-Nearest 
Neighbors

50.71 50.53 51.13 51.13



The Best Model: Logistic Regression

Precision Recall F1-Score Support

Win 0.56 0.55 0.56 14732

Lose 0.56 0.57 0.56 14767

Accuracy 0.56 29499 

Things to Note

- Relatively well balanced between 

precision and recall, so we aren’t just 

guessing

- Losses were slightly easier to predict 

than wins



5. Findings from our Basic 
Models



Linear relationships are relevant and should be included.

None of the basic non-linear models performed as well as Logistic Regression. This suggests 
that at a minimum there is some linear relationship between win and the features.

What did we learn from the models?



Feature scaling matters.

Testing the z-score vs non-zscored datasets showed that the z-score data sets performed 
better. 

What did we learn from trying different datasets?



The skill difference between players in each particular role is important.

The datasets with the difference between players performed better than the datasets 
compressed down to team metrics. This suggests that we lose too much information when only 
considering the overall team performance.

What did we learn from trying different datasets?



More complexity isn’t always better (especially with less data).

The most complex transformer model performed worse than even our worst basic model like 
XGBoost. Logistic Regression is the simplest but performed the best. This doesn’t mean more 
complexity won’t ever work, but for my dataset size, it may not be optimal.

What did we learn from recreating DraftRec?



6. Neural Networks



1. Role-Based 
Strength Model 
(Ignores Champions)

Concept:

● Predicts win probability based 

only on player stats

● Each player's performance in a 

role is encoded into a scalar 

strength score

● The difference in role strength 

between teams is aggregated 

into a team advantage score



2. Role-Based 
Strength Model With 
Champion Info

Concept:

● Extends the baseline model by 

incorporating champion 

matchups

● Introduces champion 

embeddings to learn 

interactions between opposing 

champions

New Architecture



3. Role-Based 
Strength Model With 
Champion Network

Concept:

● Extends the Champion Info 

Model by adding a 

role-weighting mechanism, 

learning role importance 
dynamically.

New Architecture



4. Role-Based Strength 
Model With Champion 
Network and Linear 
Component
Deep Learning Component (Role-Based Strength Model)

● Encodes player stats into role strength scores.
● Computes champion matchups using embeddings.
● Uses neural networks to process the information and 

generate role-based advantages

Linear Component (Raw Stats Difference)

● Directly processes team stat differences using a single 
linear layer.

● Produces a single numeric score per game.

Weighting Network

● Deep model output (role-based advantages)
● Linear model output (raw team strength differences)

New Architecture



7. Performance and 
Comparison



Performance

MODEL % Accuracy % Precision % Recall % F1-Score 

Model 1 56.66 55.21 57.10 56.14

Model 2 56.81 55.50 57.35 56.41

Model 3 57.09 55.92 57.80 56.85

Final Model 57.34 56.40 58.20 57.28



Since our output 
probabilities are 
normal, we know our 
model learned about 
the underlying data.

It’s not guessing!



The accuracy line below shows that as we 
get further from 0.5 probability we get 
more accurate. This makes sense, as we 
are more certain about our prediction.

Although our proportion of wins is 
slightly higher than expected at the 
lower end of probability (meaning we can 
likely improve those predictions) the 
trend shows that we are mostly 
proportional to the win probability. This 
means we learned well!



We can see that Top 
and Jungle have the 
most impact on 
winning or losing a 
game.

Middle and Bottom 
are next, with Support 
being the least 
influential role.

Overview of Role Impact on Game Outcome



Since Top players are 
often isolated, only 
facing their direct 
counterpart for most 
of the game, skill 
disparity plays a 
bigger role in 
determining the 
outcome.

This might explain the 
high impact of Top in 
the model.

Top: Individual Skill Matters Most



Jungle: Game-Changing Role

Jungle players can 
influence every lane 
and or play for 
themselves. Since 
jungle has the most 
influence on other 
lanes, skill disparity 
can win or lose the 
game for their team.

This could explain the 
high impact of Jungle 
in the model.



Middle: Versatile but Less Defining Role

Like Top, Middle is an 
individual role, but has 
some map influence 
like Jungle.

It’s possible because 
champions in this role 
require higher 
technical skill, this 
reduces extreme 
statistical 
differences/variation.

This could explain why 
Middle’s influence on 
the outcome of the 
game is centered 
closest to 0.



Bottom: Needs Overperformance to Matter

Bottom relies heavily 
on Support and must 
outperform their 
opponent significantly 
to impact the game.

Their role is 
damage-focused, but 
minor leads don’t 
translate into 
guaranteed victories.

This could explain why 
only outperforming 
Bottom players 
positively impact the 
outcome of the game.



Support: Difficult to Measure Statistically

Support impact varies 
heavily by champion 
choice and playstyle.

Although my model 
shows low impact of 
support overall, it 
could be due to the 
statistics used in my 
model not capturing 
the full complexity of 
the role in the game.



If top performs marginally better than 
the opponent and other teammates 
underperform, we think the team will 
lose

If top overperforms we think the 
team will win, despite our 
teammates underperforming.

*These are individual data points for comparison but may not tell the whole story



Since top is performing average the 
model had a hard time telling.

Top also didn’t perform here so we 
had a hard time telling, despite 
jungle performing above average.

*These are individual data points for comparison but may not tell the whole story



8. Challenges and what I 
learned from them



Collecting useful data scaled 
exponentially and became 

unsustainable (over 6 months).

The key mistake was not prototyping and testing on smaller data 
subsets first before committing to long-term data collection.

Fetching match data required retrieving full match histories, 
leading to an exponentially growing dataset. For every usable 
match, I needed match history for all 10 players, which expanded 
unpredictably with each new match. Additionally, older matches 
became inaccessible over time due to API limitations.

Breaking the problem into smaller 
steps would have revealed this 

earlier.

What was the problem? (Data Collection) What did I learn?

Instead of focusing only on the final dataset I wanted, I should have:

1. Estimated API limits and growth rates early to anticipate 

scaling issues.

2. Collected and analyzed a small sample first to refine my 

approach.

3. Designed a more efficient data retrieval strategy, focusing 

on getting available data now before moving to a 

completely new set of matches.



The complexity of the model wasn’t 
catered to available resources and 

task.

Starting with a complex model made it difficult to debug and track 
improvements. Without a simple baseline, it was unclear whether 
changes were actual improvements or just random fluctuations.

Always consider the resources 
available and data you have to solve 

your task.

What was the problem? (Model Creation) What did I learn?

Instead of trying the state of the art model, I will:

1. Choose a model that fits the available data and computing 
resources to ensure feasibility.

2. Avoid complexity for the sake of it, models should be 

designed to fit the actual problem being solved.



Starting with a complex model 
made it hard to debug and 

understand what progression was.

Starting with a complex model made it difficult to debug and track 
improvements. Without a simple baseline, it was unclear whether 
changes were actual improvements or just random fluctuations.

Start simple. Baselines can guide 
assumptions and clearly define 

improvements.

What was the problem? (Model Creation) What did I learn?

Instead of immediately jumping to the complex model, I will:

1. Start with a simple model to establish a baseline before 

adding complexity

2. Measure improvements iteratively rather than assuming a 

complex model will perform better.



Small performance changes made it 
difficult to evaluate improvements.

With low and near-random model performance, it was difficult to 
determine whether small improvements were meaningful or just 
noise. Balancing precision, recall, and accuracy was challenging 
because an increase in one could come at the expense of another.

Even traditional metrics like F1-score proved too sensitive to 
small fluctuations, sometimes misrepresenting overall model 
quality.

Averaging metrics wasn’t enough, 
we had to analyze raw values.

What was the problem? (Model Training) What did I learn?

Instead of relying solely on aggregated metrics, I:

1. Analyze raw precision, recall, and accuracy for each class 

individually.

2. Optimize for a more balanced distribution rather than just 
maximizing a single metric.

3. Save models based on a combination of accuracy and 
balance rather than just peak scores.



9. Final thoughts and potential 
future areas of interest



Final Thoughts
The combination Linear and Deep Neural 
Network performed the best, showing that we 
can improve our baseline Linear model with 
cross-feature interactions.

It was interesting that the Logistic Regression 
model performed the best at first, but thinking 
about how performance of player’s is likely 
normally distributed and likelihood of winning is 
also likely normally distributed, it makes sense.

It also makes sense that to the difference 
between individual roles is important, as almost 
half of the game is simply against your opponent 
of the same role.

While my model performed well, I think 
incorporation of champion matchups could be 
done better. Combining a graph neural network 
to represent champion matchups with detailed 
information about each champions strengths, 
weakness, etc. I believe could improve the model 
further.

For all of my models I used the average of a 
player’s historical performance to predict 
whether a player will win their match. The 
hardest matches are ones where players are 
statistically close in performance. It’s more 
important we can accurately predict matches 
that aren’t likely to be even so we don’t match 
those teams/players together.

Future Work


